Вопросы нейрохирургии им. Н.Н. Бурденко 2020, №5, с. 72-80 https://doi.org/10.17116/neiro20208405172 Burdenko's Journal of Neurosurgery 2020, №5, pp. 72-80 https://doi.org/10.17116/neiro20208405172

Информативность УЗИ в диагностике интраневральной периневриомы

© Д.С. Дружинин^{1,2}, Е.С. Дружинина², М.Л. Новиков³, Т.Э. Торно³, А.С. Карапетян³, С.С. Никитин²

¹ФГБОУ «Ярославский государственный медицинский университет» Минздрава России, Ярославль, Россия;

²РОО «Общество специалистов по нервно-мышечным болезням», Москва, Россия;

³ООО «Мотус Медицина», Ярославль, Россия

Резюме

Цель исследования — описать клинико-сонографические особенности доказанной ИП на примере пяти клинических случаев.

Материал и методы. Представлены клинико-сонографические особенности и данные ретроспективного наблюдения 5 случаев ИП, верифицированных при помощи патоморфологического исследования.

Результаты. Во всех случаях клиническая картина представлена медленно прогрессирующей безболевой мононейропатией с развитием мышечных атрофий, снижением сухожильных рефлексов в пораженной конечности. При ультразвуковом исследовании выявлено увеличение площади поперечного сечения нерва в пределах сегмента конечности, которое подтверждено при осмотре в операционном поле.

Заключение. Обнаружение при сонографии изменений веретеновидного утолшения нерва с участком измененной эхогенности обязательно должно насторожить в отношении наличия интраневральной периневриомы. Необходимы объединенные многоцентровые исследования на больших выборках для определения чувствительности и специфичности основных ультразвуковых показателей, включая изменение плошади поперечного сечения и эхогенности нерва.

Ключевые слова: интраневральная периневриома, ультразвуковое исследование периферических нервов, опухоль периферического нерва.

Информация об авторах:

Дружинин Д.С. — https://orcid.org/0000-0002-6244-0867; e-mail: druzhininds@gmail.com*

Дружинина Е.С. — https://orcid.org/0000-0002-1004-992X

Новиков М.Л. — https://orcid.org/0000-0001-8010-2290

Торно Т.Э. — tornotim@gmail.com

Карапетян A.C. — https://orcid.org/0000-0001-9312-6814

Никитин С.С. — https://orcid.org/0000-0003-3292-2758

* — автор, ответственный за переписку

Как цитировать:

Дружинин Д.С., Дружинина Е.С., Новиков М.Л., Торно Т.Э., Карапетян А.С., Никитин С.С. Информативность УЗИ в диагностике интраневральной периневриомы. *Вопросы нейрохирургии имени Н.Н. Бурденко*. 2020;84(5):72—80. https://doi.org/10.17116/neiro20208405172

Informative value of ultrasound in the diagnosis of intraneural perineurioma

© D.S. Druzhinin^{1,2}, E.S. Druzhinina², M.L. Novikov³, T.E. Torno³, A.S. Karapetyan³, S.S. Nikitin²

¹Yaroslavl State Medical University, Yaroslavl, Russia;

²Society of Specialists for Neuromuscular Diseases, Moscow, Russia;

³Motus Medicine LLC, Yaroslavl, Russia

Abstract

Objective. To describe clinical and sonographic features of confirmed intraneural perineurioma in 5 patients.

Material and methods. We report clinical and sonographic features and retrospective follow-up data in 5 patients with intraneural perineurioma verified by biopsy.

Results. In all cases, symptoms were represented by a slowly progressive painless mononeuropathy with muscle atrophy and impaired tendon reflexes. Ultrasound examination revealed locally enlarged cross-sectional area of the nerve that was confirmed by intraoperative visualization.

Conclusion. Intraneural perineurioma should be obligatory suspected in case of fusiform thickening of the nerve with locally changed echogenicity. Pooled multiple-center studies with large samples are needed to determine sensitivity and specificity of the main ultrasound parameters including changes in cross-sectional area and echogenicity of the nerve.

Keywords: intraneural perineurioma, ultrasound examination of peripheral nerves, peripheral nerve tumor.

Information about the authors:

 $Druzhinin\ DS.-https://orcid.org/0000-0002-6244-0867; e-mail:\ druzhininds@gmail.com* the control of the cont$

Druzhinina ES. — https://orcid.org/0000-0002-1004-992X

Novikov ML. — https://orcid.org/0000-0001-8010-2290

Torno TE. — tornotim@gmail.com Karapetyan AS. — https://orcid.org/0000-0001-9312-6814 Nikitin SS. — https://orcid.org/0000-0003-3292-2758 * — corresponding author

To cite this article:

Druzhinin DS, Druzhinina ES, Novikov ML, Torno TE, Karapetyan AS, Nikitin SS. Informative value of ultrasound in the diagnosis of intraneural perineurioma. *Burdenko's Journal of Neurosurgery = Zhurnal voprosy neirokhirurgii imeni N.N. Burdenko*. 2020;84(5):72–80. (In Russ.) https://doi.org/10.17116/neiro20208405172

Список сокращений

ИП — интраневральная периневриома
МРТ — магнитно-резонансная томография
ППС — площадь поперечного сечения
УЗИ — ультразвуковое исследование

Интраневральная периневриома (ИП) (локальная гипертрофическая мононевропатия) — редко встречающийся доброкачественный процесс, характеризующийся усиленной пролиферацией клеток периневрия в одном крупном нервном стволе [1, 2].

Впервые это явление и связанный с ним неврологический дефицит описаны D.G. Imaginario и соавт. (1964) [3] как локальная гипертрофическая мононейропатия, а в последующем встречались в литературе под другими названиями: интерстициальный гипертрофический неврит (R. Lallemand и R.O. Weller, 1973), гипертрофический нейрофиброз (Simpson и Fowler, 1966; de los Reyes и соавт., 1981) [2].

Согласно рекомендациям Всемирной организации здравоохранения от 2018 г., в настоящее время общепризнанным термином считается интраневральная периневриома [4]. Несмотря на то что такой тип патологии окончательно диагностируется на основании результатов патоморфологических и иммуногистохимических исследований, в литературе последних лет все больше данных за наличие очерченных клинико-радиологических признаков ИП [2, 5—8], которые также позволяют установить диагноз с высокой степенью вероятности. Это ставит под вопрос необходимость проведения инвазивной диагностической биопсии при подозрении на ИП. По мнению Т.J. Wilson и соавт., для диагноза ИП достаточно наличия клинических и нейровизуализационных признаков [4]. В литературе также обсуждается возможность хирургического лечения периневриом небольшой протяженности с применением трансплантата икроножного нерва, что позволяет осуществить биопсию периферического нерва [4, 5, 9, 10]. При нецелесообразности проведения нейрохирургической операции для восстановления двигательной функции применяется метод сухожильно-мышечной транспозиции [5, 9, 10]. Вопрос о том, насколько ИП является прогрессирующим заболеванием, остается открытым. В репрезентативной серии из 32 наблюдений с катамнезом в среднем 3 года М. L. Mauermann и соавт. (2009) не обнаружили динамики изменения размеров нерва и вовлечение других его участков после

установления диагноза ИП [11]. В то же время имеются противоречивые данные других авторов о вовлечении других нервов, полученные при проспективном длительном наблюдении больных с ИП [12].

Несмотря на успехи нейровизуализации в диагностике ИП, в литературе роль ультразвукового исследования (УЗИ) периферических нервов при этой патологии освещена недостаточно и представлена отдельными клиническими наблюдениями [13, 14].

Цель исследования — описать клинико-сонографические особенности доказанной ИП на примере пяти клинических случаев.

Материал и методы

За период 2015—2018 гг. у 5 пациентов (3 детей и 2 взрослых) с изолированной нетравматической мононейропатией выявлена ИП, подтвержденная данными патоморфологического исследования биоптата нерва. Гистологическое исследование проводилось с использованием окраски гематоксилином и эозином, а также по Ван Гизону. Иммуногистохимическое исследование не проводилось. Общая характеристика анализируемых случаев представлена в табл. 1.

Визуализация периферических нервов выполнена при помощи УЗИ в режиме серой шкалы линейным датчиком в диапазоне частот 8—15 МГц на сканере S20 Pro SonoScape (Китай), длина датчика — 5 см. Измерялась площадь поперечного сечения (ППС) нерва методом обвода гиперэхогенной границы нерва (trace shift). Эхогенность нерва считалась сниженной, если она сопоставима с эхогенностью внутреннего просвета артерии или вены при визуальной оценке, неизмененной — если не отличалась от эхогенности мышцы. Клиническая оценка двигательного дефицита проводилась по шкале Medical Research Council (MRC). Оценка болевой и температурной чувствительности проведена по стандартной методике неврологического осмотра (у ребенка 3 лет — клинический случай 3 — чувствительность не оценивалась). Мышечная гипотро-

Таблица 1. Общая характеристика пациентов

Признак	Случай 1	Случай 2	Случай 3	Случай 4	Случай 5
Возраст, лет	7	9	3	23	19
Пол	M	M	Ж	Ж	M
Вовлеченный нерв	Седалищный	Локтевой	Седалищный	Лучевой	Седалищный
Сторона	Левая	Левая	Правая	Правая	Левая
Длительность наблюдения, годы	3,5	3	0,5	1	1

Таблица 2. Результаты осмотра пациентов с интраневральными периневриомами

№	Нерв	Возраст, лет	Длительность болезни, годы	Асимметрия конечности	Сухожильные рефлексы	Чувствительные нарушения
1	Седалищный	7	3	+	+	_
2	ЛН Локтевой	9	1	_	+	+
3	Седалищный	3	2	+	_	Не оценены
4	Лучевой	23	5	_	+	_
5	Седалищный	19	7	+	_	-

фия оценивалась визуально по сравнению с контралатеральной стороной. Для анализа течения болезни собран анамнез с оценкой всех доступных фотографий с момента рождения, сделан ретроспективный анализ медицинской документации. Для случая 3 результаты УЗИ нервов сопоставлены с данными магнитно-резонансной томографии (МРТ), полученными при обследовании на томографе Gyroscan Intera (Philips, Нидерланды) с напряженностью магнитного поля 1,5 Тл, с последовательностью PS 3 D 125/40 и 100/40 и с толщиной среза 5 мм.

Результаты

Во всех представленных случаях клиническая картина складывалась из медленно прогрессирующей безболевой мононейропатии с развитием атрофии соответствующих мышц, снижения сухожильных рефлексов на пораженной конечности. Нарушение чувствительности отмечалось только в одном наблюдении. Поскольку симптомы развивались исподволь, дебют болезни определялся с момента обнаружения первых субъективных признаков неблагополучия. Визуально оценивалось наличие асимметрии конечности при сопоставлении со здоровой стороной (табл. 2). Гипотрофия мышц в зоне иннервации соответствующего нерва обнаружена во всех исследуемых случаях (табл. 3).

При анализе клинической картины обращала на себя внимание разная выраженность моторного дефицита вне зависимости от возраста и вовлеченного участка нерва. При УЗИ периферического нерва выявлено увеличение размеров соответствующего нерва на протяжении сегмента конечности, что подтверждено при осмотре в интраоперационном поле (табл. 4).

Малое число наблюдений не позволяет провести корреляционный анализ между количественными сонографическими показателями и выраженностью моторного дефицита.

Анализ полученных сонографических изображений выявил изменение нормальной эхоструктуры периферического нерва при продольном сканировании во всех рассматриваемых случаях в виде нарушения «кабельного» строения нерва. Нами проведено сопоставление сонографической картины с результатами макроскопической картины нерва после рассечения эпиневрия на примере двух клинических случаев (1 и 2). Участок нерва в зоне интереса представлял собой плотный, набухший тяж, визуально отличающийся от участка нормального нерва. Сравнение полученного до операции эхогенного изображения этого участка нерва с интраоперационной находкой позволило интерпретировать изменения в картине поперечного сканирования как наличие плотного тяжа в составе нерва (рис. 1).

Следует отметить, что при рутинном МРТобследовании обнаруживается характерное утолщение нерва по типу веретена, но при этом невозможно дифференцировать внутриствольные изменения в пораженном участке нерва (рис. 2). В то же время УЗИ оказывается более информативным методом для оценки распространенности поражения внутри ствола нерва, а также наличия гиперэхогенного компонента, обозначающего участок фиброзирования одиночного фасцикула.

При патоморфологическом исследовании участка уплотнения обнаружены извитые, увеличенные в размере коллагеновые волокна, ориентированные продольно, среди которых располагается большое число клеток веретеновидной и неправильной (волнистой) формы без плеоморфизма и гиперхромии ядра.

Таблица 3. Выраженность гипотрофий и моторного дефицита у обследованных пациентов

Клинический случай, оценка по шкале МКС

Случай 1

(К., 7 лет. Левый седалищный нерв)

Шкала MRC

EDB	TA	EPL	GM	BF
5	5	5	4	5

Случай 2

(Б., 9 лет. Левый локтевой нерв)

Шкала MRC

FCU	ADM	APB	FDS
4	2	3	5

(С., 3 года. Правый седалищный нерв)

Шкала MRC

EDB	TA	EPL	GM	BF
2	2	1	4	5

Случай 4

(С., 23 года. Правый лучевой нерв)

Шкала MRC

TB	BR	EDC	EPL
5	4	3	2

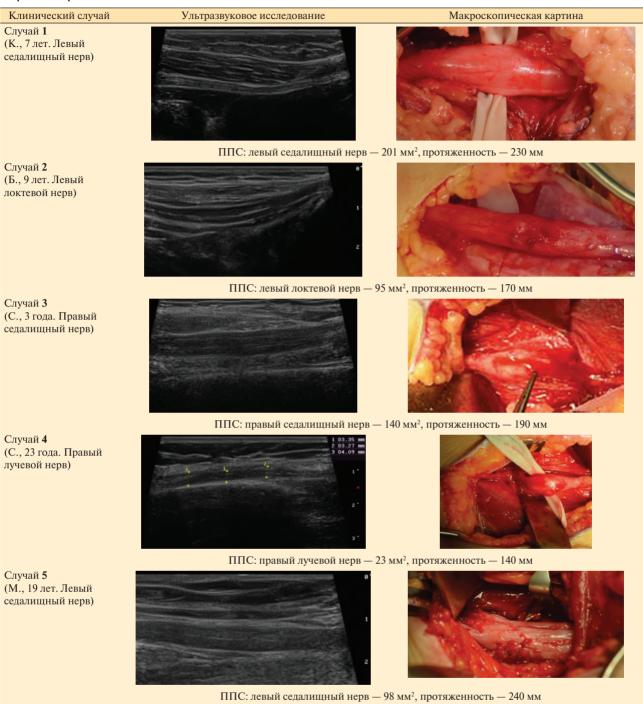
Случай 5

(М., 19 лет. Левый седалищный нерв)

Шкала MRC

EDB	TA	EPL	GM	BF
5	5	5	4	5

 Π римечание. ADM — m. Adductor digity minimi; APB — m. Adductor pollicis brevis; BF — m. Biceps femoris; BR — m. Brachioradialis; EDB — m. Extensor/ Igitorum brevis; EDC — m. Extensor digitorum communis; EPL — m. Extensor pollicis longus; FCU — m. Flexor carpi ulnaris; GM — m. Gastrocnemius; TA — m. Tibialis anterior; TB — m. Triceps brachii.


Нервные волокна находятся непосредственно в контакте с ними, перемешаны хаотично. Внутри фиброза обнаружен участок низкой клеточной плотности с преобладанием гиалиновой стромы и вытянутыми кровеносными сосудами с тонкой соединительнотканной оболочкой (рис. 3). Окраска по Ван Гизону выявила фуксинофильные извитые коллагеновые

волокна с участками фиброза. Описанная гистологическая картина соответствует ИП.

Обсуждение

По данным литературы, описанная нами сонографическая картина в виде локального утолщения

Таблица 4. Макроскопическое и сонографическое сопоставления интраневральных периневриом в представленных случаях (эпиневрий не вскрыт)

Примечание. ППС — площадь поперечного сечения.

нерва веретеновидной формы на протяжении одного сегмента конечности соответствует ИП [1, 4, 11]. Патоморфологическая и макроскопическая картины нерва, выявившие фиброзированные коллагеновые волокна с большим числом веретеновидных клеток, находящихся в плотном контакте с нервными волокнами и участками фиброзирования, также соответствует ИП. Результаты проведенного иссле-

дования полностью соответствуют описанной ранее патоморфологической картине периневриомы [4, 11]. В результате исследования, проведенного у 5 пациентов, нами обнаружены следующие дополнительные изменения, которые могут помочь при формулировании диагноза, а именно локальное веретеновидное утолщение нерва на протяжении сегмента конечности с участком выделяющейся эхогенности,

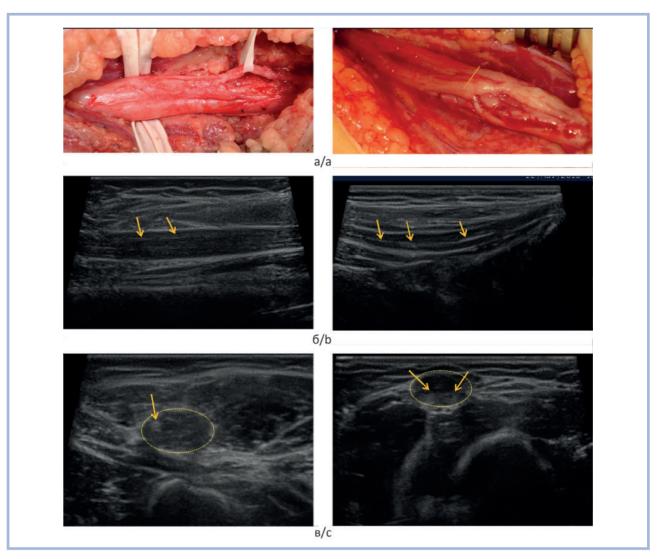
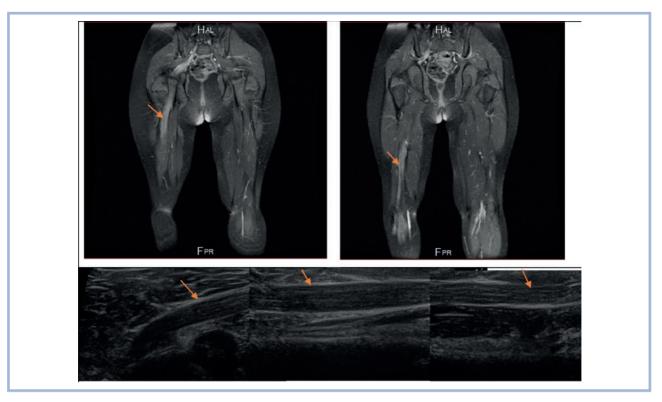
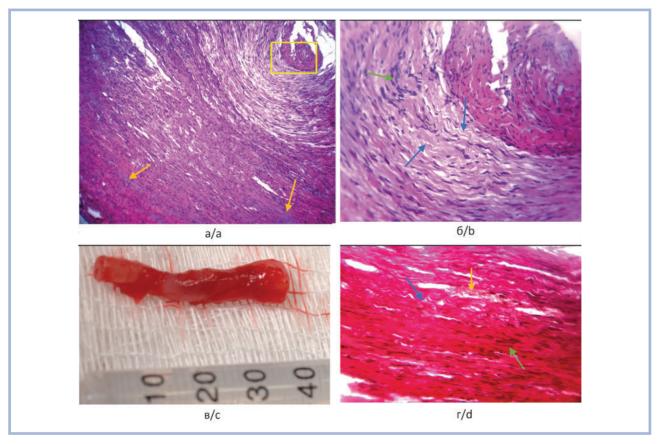


Рис. 1. Сравнение сонографического изображения нерва и интраоперационной картины после рассечения эпиневрия.


Случай 1 (седалищный нерв — средняя треть бедра). Случай 2 (локтевой нерв нижняя треть плеча). а — интраоперационная фотография участка нерва после вскрытия его внешней оболочки; б — ультразвуковое продольное сканирование нерва; в — ультразвуковое поперечное сканирование нерва. Оранжевая стрелка — участок измененной эхогенности в нерве.

которое, как показало прямое сопоставление с макроскопическим изменением нерва, соответствует участку фиброза.


Подобное сопоставление проводится впервые. В наших наблюдениях все периневриомы имели диффузный характер с вовлечением всего поперечного сечения нерва, в то время как в литературе описаны отдельные наблюдения с эксцентрическим расположением ИП [2, 11, 12]. При анализе описательных характеристик измененных участков нервов протяженность их может составлять от 2 до 25 см [15]. В наших наблюдениях разброс величин составил от 19 до 23 см. По данным литературы, возраст пациентов, в котором произошел дебют описанных случаев ИП, составил от 10 до 26 лет, средний возраст — 17 лет [15]. В нашем исследовании описаны случаи обнаружения этого заболевания у пациентов в возрасте от 3 до 23 лет, что требует на-

стороженности относительно наличия периневриомы даже у детей раннего возраста. По данным литературы, не выявлено корреляций между степенью увеличения нерва и глубиной моторного дефицита, что прослеживается и у наших пациентов, несмотря на то что статистическая обработка невозможна в связи с ограниченностью числа наблюдений. В крупных исследованиях по изучению ИП с большой выборкой больных получены результаты, указывающие на отсутствие роста ИП [4, 11]. Тактика ведения таких больных включает в себя целенаправленную биопсию участка нерва для подтверждения диагноза и при необходимости транспозицию сухожилий [4, 6, 10, 11].

Ограничением нашего исследования служит малый размер выборки, только в двух наблюдениях проведено вскрытие оболочек на достаточном расстоянии, за исследуемый период наблюдения не оцени-

Рис. 2. Сопоставление магнитно-резонансных томограмм и панорамного ультразвукового сканирования правого седалишного нерва у ребенка 3 лет (клинический случай 3).

Рис. 3. Результаты патоморфологического исследование седалишного нерва (клинический случай 1). а — $\times 150$, б — $\times 300$, окраска гематоксилином и эозином; в — макрофотография образца плотного тяжа; г — окраска по Ван Гизону, $\times 300$. (Пояснение в тексте.) Синяя стрелка — коллагеновые волокна, желтая стрелка — участки фиброза, зеленая стрелка — периневральные клетки.

валась динамика количественных ультразвуковых показателей, в представленных наблюдениях включены разные нервы, выборка имеет широкий возрастной разброс.

Заключение

Проведенное исследование показало, что обнаружение при сонографии изменений веретеновидного утолщения нерва с участком измененной эхогенности обязательно должно насторожить в отношении наличия интраневральной периневриомы. В последние годы специалисты единодушны во мнении о нецелесообразности хирургического лечения с использованием трансплантата. Это существенно ограничивает взятие материала для гистологического исследования с целью подтверждения диагноза патоморфологическими и иммуногистохимическими методами, а также ставит вопрос о возможности использования ультразвукового исследования как одного из основных методов подтверждения диагноза в сопоставлении с данными

клиники. Необходимы объединенные многоцентровые исследования на больших выборках для определения чувствительности и специфичности основных ультразвуковых показателей, включая изменение площади поперечного сечения и эхогенности нерва.

Участие авторов:

Концепция и дизайн исследования — Дружинин Д.С., Никитин С.С.

Сбор и обработка материала — Дружинин Д.С., Дружинина Е.С., Новиков М.Л., Торно Т.Э., Карапетян А.С.

Статистический анализ данных — Дружинин Д.С., Дружинина Е.С., Новиков М.Л., Торно Т.Э., Карапетян А.С.

Написание текста — Дружинин Д.С., Никитин С.С.

Редактирование — Дружинин Д.С., Никитин С.С. **Авторы заявляют об отсутствии конфликта интересов.**

The authors declare no conflict of interest.

AUTEPATYPA/REFERENCES

- Macarenco RS, Ellinger F, Oliveria AM. Perineurioma: a distinctive and underrecognized peripheral nerve sheath neoplasm. *Archives of Pathology and Laboratory Medicine*. 2007;131(4):625-636. https://doi.org/10.1043/1543-2165(2007)131[625:PADAUP]2.0.CO;2
- Boyanton BL Jr, Jones JK, Shenaq SM, Hicks MJ, Bhattacharjee MB. Intraneural perineurioma: a systematic review with illustrative cases. *Archives of Pathology and Laboratory Medicine*. 2007;131(9):1382-1392. https://doi.org/10.1043/1543-2165(2007)131[1382:IPASRW]2.0.CO;2
- Imaginario JDG, Coelho B, Tome F, Luis MLS. Nevrite inter stitielle hypertrophy que monosymptomatique. *Journal of the Neurological Sciences*. 1964;1(4):340-347.
- Wilson TJ, Amrami KK, Howe BM, Spinner RJ. Clinical and Radiological Follow-up of Intraneural Perineuriomas. *Neurosurgery*. 2019;85(6):786-792. https://doi.org/10.1093/neuros/nyy476
- Scheller C, Richter HP, Scheuerle A, Kretschmer T, Konig RW, Antoniadis G. Intraneural perineuriomas; a rare entity. Clinical, surgical and neuropathological details in the management of these lesions. *Zentralblatt fur Neurochirurgie*. 2008;69(3):134-138. https://doi.org/10.1055/s-2008-1077081
- Emory TS, Scheithauer BW, Hirose T, Wood M, Onofrio BM, Jenkins RB. Intraneural perineurioma. A clonal neoplasm associated with abnormalities of chromosome 22. American Journal of Clinical Pathology. 1995;103(6):696-704. https://doi.org/10.1093/ajcp/103.6.696
- Ariza A, Bilbao JM, Rosai J. Immunohistochemical detection of epithelial membrane antigen in normal perineurial cells and perineurioma. *The American Journal of Surgical Pathology*. 1988;12(9):678-683. https://doi.org/10.1097/00000478-198809000-00004
- Wilson TJ, Howe BM, Stewart SA, Spinner RJ, Amrami KK. Clinicoradiological features of intraneural perineuriomas obviate the need for tissue diagnosis. *Journal of Neurosurgery*. 2018;129(4):1034-1040. https://doi.org/10.3171/2017.5.JNS17905

- Gruen JP, Mitchell W, Kline DG. Resection and graft repair for localized hypertrophic neuropathy. *Neurosurgery*. 1998;43(1):78-83. https://doi.org/10.1097/00006123-199807000-00051
- Chung JH, Jeong SH, Dhong ES, Han SK. Surgical removal of intraneural perineurioma arising in the brachial plexus using an interfascicular dissection technique. *Archives of Plastic Surgery*. 2014;41(3):296-299. https://doi.org/10.5999/aps.2014.41.3.296
- Mauermann ML, Amrami KK, Kuntz NL, Spinner RJ, Dyck PJ, Bosch EP, Engelstad J, Felmlee JP, Dyck PB. Longitudinal study of intraneural perineurioma — a benign, focal hypertrophic neuropathy of youth. *Brain*. 2009;132(8):2265-2276. https://doi.org/10.1093/brain/awp169
- Lee HY, Manasseh RG, Edis RH, Page R, Keith-Rokosh J, Walsh P, Song S, Laycock A, Griffiths L, Fabian VA. Intraneural perineurioma. *Journal of Clinical Neuroscience*. 2009;16(12):1633-1636. https://doi.org/10.1016/j.jocn.2009.02.013
- Krogias C, Gold R, Schelle T, Böhm J, Junker A, Sure U, Uerschels AK. Teaching NeuroImages: Sonographic detection of intraneural perineurioma in therapy-refractory carpal tunnel syndrome. *Neurology*. 2017;88(10):85-86. https://doi.org/10.1212/WNL.000000000003692
- Salvalaggio A, Cacciavillani M, Coraci D, Erra C, Gasparotti R, Ferraresi S, Padua L, Briani C. Nerve ultrasound and 3D-MR neurography suggestive of intraneural perineurioma. *Neurology*. 2016;86(12):1169-1170. https://doi.org/10.1212/WNL.000000000002488
- Bowen BC, Maravilla KR, Saraf-Lavi E. Magnetic Resonance Imaging of the peripheral nervous system. Chapter 73. In: Latchaw, J Kucharczyk, ME Moseley, eds. Imaging of the nervous system. Diagnostic and therapeutic applications. Vol. 2. Mosby, Philadelphia; 2005:1479-1497.

Комментарий

На протяжении последних десятилетий ультразвуковая визуализация периферических нервов прочно входит в диагностический алгоритм как одно из базовых дополнительных обследований при патологии периферической нервной системы. Несмотря на это, до настоящего времени роль этой методики недостаточно популяризирована. Таким образом, работа, посвященная УЗИ-визуализации редкой патологии периферических нервов, имеет существенное практическое значение.

В связи с отсутствием внешних травмирующих факторов и медленно развивающейся клинической картиной интраневральная периневриома может быть ошибочно отнесена к группе идиопатических невропатий. Поэтому возможность выявить патологию ствола нерва в спорной клинической ситуации трудно переоценить. В предлагаемой статье авторы рассматривают редкую патологию периферических нервов — интраневральную периневриому, которая в силу неспецифических клинических проявлений представляет трудную диагностическую задачу. В данной ситуации сонография явилась практически методом выбора. С ее помощью удалось выявить и оценить внутриствольные изменения пораженных нервов. На основании полученных данных стало возможным определить дальнейшую тактику лечения пациентов данной группы.

Работа оформлена согласно установленным требованиям. В начале статьи на основании литературного анали-

за доказательно представлена актуальность темы, четко сформулирована цель работы. Глубина литературного поиска составила 13 лет.

Малое количество пациентов восполняется подробным их обследованием с применением международных шкал оценки. У всех пациентов проведен глубокий ретроспективный анамнестический поиск. В соответствии с международными протоколами произведены патоморфологическая оценка и гистохимическая обработка материала, что позволило провести сравнение с данными, приведенными в иностранных источниках.

Во время анализа сонографической патологической картины пораженных стволов удалось выявить особенность внутриствольных изменений, ранее не описанную в литературе, что можно отнести к научной новизне. Проведено сравнение сонографических данных с макроскопической интраоперационной картиной, это позволило лучше интерпретировать данные поперечного и продольного сканирования пораженного участка нерва. В обсуждении приводятся данные дискуссии по поводу оптимальных методов лечения подобных больных, описана диагностическая ценность различных нейровизуализационных методик.

Публикация данной работы целесообразна в силу ее актуальности и практической ценности.

А.В. Шток (Москва)